Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. microbiol ; 47(1): 143-149, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-775118

RESUMO

Abstract Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.


Assuntos
Aspergillus/enzimologia , Lipase/metabolismo , Cátions Bivalentes/metabolismo , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Concentração de Íons de Hidrogênio , Lipase/química , Lipase/isolamento & purificação , Peso Molecular , Mercaptoetanol/metabolismo , Metais/metabolismo , Temperatura
2.
Braz J Microbiol ; 47(1): 143-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26887237

RESUMO

Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30°C for 96h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50°C, and substrate concentration of 1.5%. The enzyme was thermostable at 60°C for 1h, and the optimum enzyme-substrate reaction time was 30min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30°C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn(2+), followed by Mg(2+) and Fe(2+). Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1mM) and the reducing, ß-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.


Assuntos
Aspergillus/enzimologia , Lipase/metabolismo , Cátions Bivalentes/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativadores de Enzimas/análise , Inibidores Enzimáticos/análise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Lipase/química , Lipase/isolamento & purificação , Mercaptoetanol/metabolismo , Metais/metabolismo , Peso Molecular , Temperatura
3.
3 Biotech ; 6(1): 36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330106

RESUMO

Aspergillus terreus NCFT4269.10 was implemented in solid-state (SSF) and liquid static surface fermentation (LSSF) for biosynthesis of pectinase. Amongst various substrates, like, mustard oil cake, neem oil cake, groundnut oil cake, black gram peels, green gram peels, chickling vetch peels/grass pea peels wheat bran, pearl millet residues, finger millet waste, broken rice, banana peels (BP), apple pomace (AP) and orange peels, banana peel (Musa paradisiaca L.; Family: Musaceae) was most suitable for pectinase biosynthesis (LSSF: 400 ± 21.45 Uml-1; SSF: 6500 ± 1116.21 Ug-1). Optimization of process parameters using one-variable-at-a-time method revealed that an initial medium pH of 5.0 at 30 °C and 96 h of incubation along with mannitol, urea, ammonium persulfate and isoleucine have positive influence on pectinase production. Further, K+ (1 mM), Riboflavin (10 mg 100 ml-1) and gibberellic acid (0.025 %, w/v) supported in enhanced pectinase production. Banana peels and AP at a ratio of 9:1, moisture content of 90 % with 2 % inoculum size were suitable combinations for production of pectinase. Similarly, 96 h of soaking time with 0.1 M phosphate buffer (pH 6.5) is essential for pectinase recovery. Purification to electrophoretic homogeneity revealed 1.42 fold purification with 8.08 % yield and a molecular weight of 24.6 kDa. Scaling up of various fermentation parameters and supplementing BP as the substrate for pectinase production with better recovery could make it promising for different industrial exploitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...